Standard representation of multivariate functions on a general probability space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Standard Representation of Multivariate Functions on a General Probability Space

It is well-known that a random variable, i.e. a function defined on a probability space, with values in a Borel space, can be represented on the special probability space consisting of the unit interval with Lebesgue measure. We show an extension of this to multivariate functions. This is motivated by some recent constructions of random

متن کامل

On the Concavity of Multivariate Probability Distribution Functions on the Concavity of Multivariate Probability Distribution Functions

We prove that the multivariate standard normal probability distribution function is concave for large argument values. The method of proof allows for the derivation of similar statements for other types of multivariate probability distribution functions too. The result has important application, e.g., in probabilistic constrained stochastic programming problems.

متن کامل

Skorohod Representation on a given Probability Space

Let (Ω,A, P ) be a probability space, S a metric space, μ a probability measure on the Borel σ-field of S, and Xn : Ω → S an arbitrary map, n = 1, 2, . . .. If μ is tight and Xn converges in distribution to μ (in HoffmannJørgensen’s sense), then X ∼ μ for some S-valued random variable X on (Ω,A, P ). If, in addition, the Xn are measurable and tight, there are S-valued random variables ∼ Xn and ...

متن کامل

On the concavity of multivariate probability distribution functions

We prove that the multivariate standard normal probability distribution function is concave for large argument values. The method of proof allows for the derivation of similar statements for other types of multivariate probability distribution function too. The result have important application, e.g., in probabilistic constrained stochastic programming problems.

متن کامل

A Probability Space based on Interval Random Variables

This paper considers an extension of probability space based on interval random variables. In this approach, first, a notion of interval random variable is introduced. Then, based on a family of continuous distribution functions with interval parameters, a concept of probability space of an interval random variable is proposed. Then, the mean and variance of an interval random variable are intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2009

ISSN: 1083-589X

DOI: 10.1214/ecp.v14-1477